

SPECIAL REPORT

Diadenosine tetraphosphate-induced inhibition of ATPsensitive K⁺ channels in patches excised from ventricular myocytes

Aleksandar Jovanovic & 'Andre Terzic

Division of Cardiovascular Diseases, Departments of Medicine and Pharmacology, Mayo Clinic, Mayo Foundation, Rochester, MN 55905, U.S.A.

Diadenosine 5',5"-P1,P4-tetraphosphate (Ap4A) has been termed 'alarmone' due to its role in intracellular signaling during metabolic stress. It is not known whether Ap₄A could modulate ATP-sensitive K (K_{ATP}) channels, a family of channels regulated by the metabolic status of a cell. We applied the singlechannel patch-clamp technique to measure the effect of Ap₄A on K_{ATP} channels. When applied to the intracellular side of patches, excised from guinea-pig ventricular myocytes, Ap4A inhibited KATP channel activity, in a reversible and concentration-dependent (half-maximal concentration $\sim 17 \, \mu M$) manner. We conclude that Ap₄A, a naturally occurring diadenosine polyphosphate, is actually an inhibitor of the myocardial K_{ATP} channel.

Keywords: ATP-sensitive K⁺ channel; diadenosine 5',5"-P¹,P⁴-tetraphosphate; diadenosine polyphosphate; alarmone; channel gating; guinea-pig; heart; cardiomyocyte

Introduction Diadenosine 5',5"-P1,P4 tetraphosphate (Ap₄A) has been termed putative 'alarmone' to denote that this dinucleotide polyphosphate is synthesized during metabolic challenges and could act homeostatically under stress conditions (Varshavsky, 1983). In several cell types a direct intracellular effect of Ap₄A has been demonstrated on enzymes with nucleotide-binding domains which are associated with cellular metabolism (Yakovenko & Formazyuk, 1993).

ATP-sensitive K+ (KATP) channels are gated by intracellular ATP, and provide a link between cellular metabolism and membrane excitability (Ashcroft & Ashcroft, 1990; Davies et al., 1991; Edwards & Weston, 1993). In the myocardium, modulation of K_{ATP} channel activity during metabolic stress has been related to intracellular mononucleotides, such as ATP (Nichols & Lederer, 1991; Findlay, 1994; Terzic et al., 1994b). It is unknown whether a dinucleotide polyphosphate with putative 'alarmone' properties, such as Ap₄A, could also affect K_{ATP} channel activity. Therefore, we evaluated the effect of Ap_4A on cardiac K_{ATP} channels.

Methods Ventricular myocytes were isolated from guinea-pig hearts, and the inside-out configuration of the patch-clamp technique used to record channel activity (Terzic et al., 1994a). Patch pipettes $(3-5 \text{ M}\Omega)$ were filled with (in mm): KCl 140, CaCl₂1, MgCl₂1, HEPES-KOH 5 (pH 7.4), and the intracellular side of excised patches exposed to (in mm): KCl 140, MgCl₂1, EGTA-KOH 5, HEPES-KOH 5 (pH 7.3) in the absence and presence of ATP or AP₄A (Sigma). Singlechannel recording was conducted at a holding potential of -60 mV (21-23°C) using a patch-clamp amplifier (Axopatch 1C). Data, stored on tape using a PCM converter system (Instrutech), and low-pass filtered at 1-1.5 kHz (-3 dB) by a Bessel filter (Frequency Devices), were sampled at 4 kHz, and analyzed with the 'BioQuest' software (developed by Dr A.E. Alekseev). Channel activity was expressed as NP_0 (N = numberof channels in the patch; P_o = open probability of each channel). Data are represented as mean ± s.e.mean. Statistical significance of differences between two means was determined with Student's t test, and P < 0.05 considered significant.

Results Upon excision of a patch from a cardiomyocyte, vigorous openings of KATP channels appeared, and could be blocked by 200 μ M ATP (Figure 1a). At equimolar concentrations of K⁺ on the external and internal sides of a patch, these channels had a unitary conductance of ~90 pS, as described for myocardial K_{ATP} channels (Findlay, 1994; Terzic et al., 1994b). Addition of AP₄A (50 μ M) to the intracellular side of a patch, did not affect the magnitude of the unitary current flowing through a K_{ATP} channel $(5.7\pm0.3 \text{ vs.}5.7\pm0.3 \text{ pA} \text{ at})$ -60 mV in the absence and presence of AP₄A, respectively; P > 0.05, n = 9). Yet AP₄A (50 μ M) induced immediate inhibition of K_{ATP} channels (Figure 1b(i)). The NP_o, was 4.37 ± 1.11 in the absence, and 0.60 ± 0.22 in the presence of 50 μ M AP₄A (P < 0.01, n = 9; Figure 1b(ii)). The effect of AP₄A was partially reversible (Figure b(i), and the NP_o returned to 2.81 ± 0.80 following washout of AP₄A (n=9; Figure 1b(ii)). The inhibitory effect of AP₄A on K_{ATP} channels was concentrationdependent. The concentration-response relationship was fitted to a Hill equation with a half-maximal concentration estimated at 17 μ M, and a slope factor of 1.2 (Figure 2).

Discussion This study demonstrates that Ap₄A, a naturally occurring dinucleotide polyphosphate, inhibits myocardial K_{ATP} channels. This represents a previously unrecognized property of Ap4A, that could relate to the proposed intracellular potential of this molecule to regulate cellular metabolism.

The dinucleotide polyphosphate, Ap₄A, was effective when applied in micromolar concentrations to the intracellular side of excised patches. The effect of Ap₄A was concentration-dependent suggesting the involvement of a saturable binding site. The potency and efficacy of Ap₄A in blocking K_{ATP} channels was comparable to that described for the ATP-evoked KATP channel inhibition (Nichols & Lederer, 1991; Findlay, 1994; Terzic et al., 1994b). Since Ap_4A inhibited K_{ATP} channels in the absence of intracellular GTP, it implies that a GTP-binding

¹ Author for correspondence.

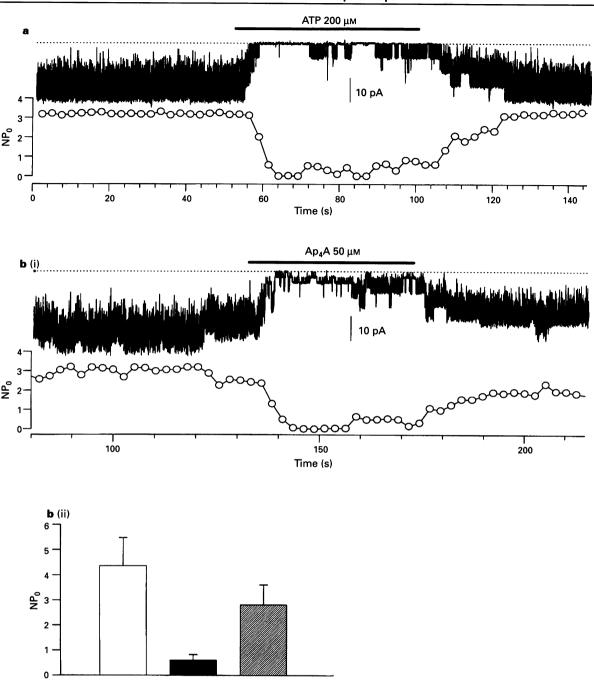
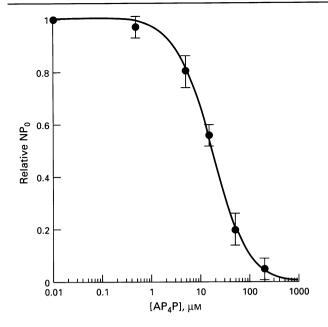



Figure 1 ATP-(a) and Ap₄A- (b) induced inhibition of K_{ATP} channels. Upper traces in (a) and (b(i)): channel records. Lower traces in (a) and (b(ii)): corresponding NP_o values calculated over 2.5-s long intervals. Dotted lines: zero current level. (b(ii)) Average NP_o prior to (open column), during (solid column), and after (hatched column) application of $50\,\mu\text{M}$ Ap₄A to the intracellular side of patches.

protein is not required to transduce this effect. These findings probably exclude the possibility that the effect of Ap₄A on K_{ATP} channels was due to an extracellular action on purinoceptors (Baxi & Vishwanatha, 1995). Rather, Ap₄A could have acted directly on intracellular binding sites either on the K_{ATP} channel itself or associated proteins. Previously, interactions of Ap₄A with intracellular nucleotide-binding enzymes have been associated with the binding of Ap₄A to nucleotide-binding sites (Baxi & Vishwanatha, 1995). Thus, the site of action of Ap₄A could include the putative ATP-binding inhibitory or other nucleotide-binding site(s) of K_{ATP} channels (Edwards & Weston, 1993; Findlay, 1994; Terzic *et al.*, 1994a). Regardless of the site of action of Ap₄A, the present study

suggests that cardiac K_{ATP} channels could be gated not only by ATP and related mononucleotides, but also by the dinucleotide polyphosphate, Ap_4A .

The physiological importance of the action of Ap₄A on K_{ATP} channels is, at present, unknown. Ap₄A is synthesized intracellularly, yet the concentrations of Ap₄A in cells at rest are in the pico- to nanomolar range (Yakovenko & Formazyuk, 1993). However, endogenous Ap₄A has a considerably longer intracellular half-life than ATP (Baxi & Vishwanatha, 1995), and under stress conditions, Ap₄A can rise to concentrations >>1 μ M (Varshavsky, 1983). Provided that the affinity of K_{ATP} channels for Ap₄A in intact myocytes is similar to that measured in excised patches, it is under stress

Figure 2 Concentration-dependent inhibition of K_{ATP} channels by Ap₄A. At different concentrations of Ap₄A, relative channel activity was obtained with reference to values recorded in the absence of Ap₄A. Data are from 6–9 patches for each point. Solid line was drawn according to the equation: $y = 1/\{1 + ([Ap_4A]/K_1)^{n_H}\}$; $y = \text{relative NP}_o$ at each Ap₄A concentration ([Ap₄A]), $K_i = [Ap_4A]$ at half-maximal inhibition of channels = 17 μ M; $n_H = \text{Hill coefficient} = 1.2$.

conditions that sufficient levels of intracellular Ap_4A could be synthesized to affect channel activity. Hence, the putative role of Ap_4A in the intracellular regulation of K_{ATP} channels awaits definition.

The authors acknowledge the expert contribution of Dr A.E. Alekseev with computer programming. A.T. is a recipient of the Ruth Salta Young Investigator Award from the American Health Assistance Foundation and of the Faculty Developmental Award from the Pharmaceutical Research and Manufacturers of America Foundation.

References

ASHCROFT, S.J.H. & ASHCROFT, F.M. (1990). Properties and functions of ATP-sensitive K⁺-channels. *Cell. Signal.*, **2**, 197–214

BAXI, M.D. & VISHWANATHA, J.K. (1995). Diadenosine polyphosphates: their biological and pharmacological significance. *J. Pharmacol Methods*, **33**, 121-128.

DAVIES, N.W., STANDEN, N.B. & STANFIELD, P.R. (1991). ATP-dependent potassium channels of muscle cells: Their properties, regulation, and possible function. *J. Bionerg. Biomembr.*, 23, 509-535.

EDWARDS, G. & WESTON, A.H. (1993). The pharmacology of ATP-sensitive potassium channels. *Annu. Rev. Pharmacol. Toxicol.*, 33, 597-637.

FINDLAY, I. (1994). Interactive regulation of the ATP-sensitive potassium channel of cardiac muscle. *J. Cardiovasc. Pharmacol.*, **24**, S6-S11.

NICHOLS, C.G. & LEDERER, W.J. (1991). Adenosine triphosphatesensitive potassium channels in the cardiovascular system. *Am. J. Physiol.*, **261**, H1675-H1686.

TERZIC, A., FINDLAY, I., HOSOYA, Y. & KURACHI, Y. (1994a). Dualistic behaviour of ATP-dependent K⁺ channel towards intracellular nucleoside diphosphates. *Neuron*, **12**, 1049-1058.

TERZIC, A., TUNG, R.T. & KURACHI, Y. (1994b). Nucleotide regulation of ATP-sensitive K⁺ channels. *Cardiovasc. Res.*, 28, 746-753

VARSHAVSKY, A. (1983). Diadenosine 5',5"'-P¹, P⁴-tetraphosphate: a pleotropically acting alarmone? *Cell*, **34**, 711-712.

YAKOVENKO, I.N. & FORMAZYUK, V.E. (1993). Diadenosine oligophosphates: metabolic pathways and role in regulation of the functional activity of cells. *Biokhimiya*, **58**, 3-24.

(Received September 20, 1995 Accepted October 4, 1995)